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The reasons why nuclear electron-capture rates in stars 

depend on temperature and density are discussed, and some astro- 

physical applications of continuum electron-capture rates are 

reviewed. The modern theory of nuclear beta-decay is then used 

to calculate stellar continuum electron-capture rates for tran- 

sitions of an arbitrary degree of forbiddenness. The equations 

that are most usef'ul for astrophysical applications are discussed 

in detail; particular emphasis is placed upon methods for pre- 

dicting stellar rates that utilize, whenever possible, terrestrial 

measurements. Three examples are discussed that illustrate the 

use of the formulae given in this paper; the examples are: 

(a) the electron-capture lifetime of a proton, (b) the stellar 

beta-decay of IC4', and (c) the effect of forbidden transitions 

on the abundances of elements in the iron peak. A d--nWE 

I. INTROIUCTION 

Section a) of this introduction is devoted to answering two questions: 

why do electron-capture lifetimes of nuclei in a star depend sensitively (1) 

on the local temperature and density, and (2) what are some of the astro- 

physical applications of stellar electron-capture lifetimes? 

the introduction is a summary of the results presented in the remainder of 

this paper. 

Section b) of 

a) Motivation 

Atoms in stellar interiors are highly ionized and hence cannot capture 

bound electrons as easily as they can on earth. This nigh degree of 
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ionization i s  largely a consequence of t h e  enormous temperatures that  exist 

i n  s t e l l a r  inter iors .  For example, temperatures i n  the  range t o  10’’ OK 

are thought t o  obtain i n  the interiors of red giant stars (Burbidge, Burbidge, 

Farler, and Hoyle 1957; Cameron 1958); t h i s  temperature range corresponds t o  

an average thermal energy of 13-130 kev. 

Is electron i n  Californium ( Z  = 98) is  about 133 kev, it is obvious that  most 

Since the  ionization energy of a 

nuclei i n  the in te r ior  of a red giant possess few, i f  any, bound electrons. 

Moreover, the thermal energy i n  the inter ior  of a main sequence star i s  of 

the  order of 1 kev, so that l igh t  nuclei, such as He3 or Be , are completely 7 

stripped of electrons i n  the inter iors  of main sequence stars. The above 

qual i ta t ive arguments are  supported by the quantitative analysis of Cox and 

Eilers (1962), who calculated, frm s t a t i s t i c a l  mechanical considerations, 

the average degree of ionization of a number of heavy elements under some 

typ ica l  s te l la r - in te r ior  conditions. 

Nuclei that  decay on earth by t h e  capture of bound atomic electrons may 

decay i n  stellar in te r iors  by t’ne capture of free electrons fromthe surround- 

ing hot plasma. The t e r r e s t r i a l  capture of a bound electron i s  described 

symbolically by the  following equation: 

eb + (z,A) + ( 2 - 1 , ~ )  i. v Y (1) 

where Z and A are the  nuclear charge and atomic nuuiber, respectively, of 

the  i n i t i a l  nucieus. The corresgsnding stellar reaction is written symbolic- 

a l l y  

e + (Z,A) + ( 2 -  1,A) + v 
C 

where ec i s  any continuum electron i n  the  plasma surrounding (Z,A) . Under 
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most s te l la r - in te r ior  conditions, reaction (2) i s  f a s t e r  than reaction (1) 

(Schatzman 1958; Bahcall 1962 g,b; Fowler and Hoyle 1963). 

The ra t e  of reaction (2) is proportional t o  t h e  probabili ty tha t  a 

continuum electron i s  present at  the  nucleus where it can be captured. 

probabili ty of finding an electron a t  the nucleus i s  i n  turn  proportional 

t o  the electron density and inversely proportional t o  the average electron 

velocity, which for  nondegenerate electrons depends on the square root of 

the temperature. 

electron temperature and density. 

The 

Thus the rate of reaction (2) depends strongly on the loca l  

If a nucleus decays t e r r e s t r i a l ly  by positron emission, 

(3) 
+ 

(Z,A) + (Z-1,A) + e + v , 

it will decay primarily by continuum electron capture i n  a star whose density 

i s  suf f ic ien t ly  high. This change i n  the mode of decay occurs because 

electron-capture probabi l i t ies  are enhanced by high densi t ies  and most 

positron emission rates are  insensitive t o  densi t ies  of magnitude encountered 

i n  stars (Bahcall 19625). 

If a nucleus (2,A) is  a s table  beta-decay product on earth, 

( Z - 1 , A )  + (Z,A) + e- + , (4 1 

it can undergo -- induced electron capture a t  suf f ic ien t ly  high temperatures or  

densi t ies  v ia  reaction (2).  The rakes of such endoergic reactions, for  

example, 
- 

e + p  -c n + v  , 
C 

are extremely sensi t ive functions of temperature and density since they only 

occur f o r  continuum electrons having a t  l ea s t  the  threshold e n e r a .  
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Terres t r ia l  electron captures t ake  place via reaction (1) and t h e i r  

ra tes  are therefore largely determined by fixed atomic parameters. Stellar 

electron captures take place primarily via reaction (2) and hence depend on 

the variable properties of the s t e l l a r  plasma. 

Thus stellar-capture ra tes  are highly variable, although terrestrial- 

capture r a t e s  a re  almost immutable. This difference i n  behavior is due 

ult imately t o  t h e  enormous range of temperatures and densi t ies  that occur i n  

stars 

F’romthe time a star first begins t o  use nuclear reactions as an energy 

source u n t i l  its f i n a l  stages of evolution, electron capture plays an iqpor t -  

ant ro l e  i n  the nuclear transformations responsible for stel lar  energy 

generation and the synthesis of heavy elements. 

electron-capture calculations are reviewed below. 

Some applications of 

7 Schatzman (1958) has discussed the ro le  of He3 electron capture and Be 

As an in te res t ing  side l ight,  

7 

electron capture i n  the proton-proton chain. 

we note that an accurate calculation of the  Be 

1962b) has recently been combined with other nuclear and astronomical data t o  

obtain a prediction of the solar  neutrino flux (BahcaJ.1, Fowler, Den, and 

Sears 1963, hereafter referred t o  as FIBS). 

decay rate i n  the sun (Bahcall 

A knowledge of the beta-decay rates  (including electron-capture r a t e s )  

of heavy nuclei under extreme conditions of temperature and density is necessary 

for  a. detai led understanding of the formation of heavy elemer?ts by slow neutron 

capture (Clayton, Fowler, Hull, and Zimmerman 1961; Cameron 1959a). - If the 

beta-decay l i fe t ime of an unstable isotope is long compared t o  i t s  neutron- 

capture lifetime, the isotope W i l l  usually capture a neutron instead of 

transforming by some beta-decay process. Conversely, i f  the beta-decay 
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it i s  necessary t o  have theoret ical  expressions for the  relevant electron- 

I 

l ifetime of an unstable isotope is short compared t o  i t s  neutron-capture 

lifetime, the nucleus will usually beta-decay before a neutron i s  captured. 

I 
Thus the path of successive neutron captures i n  the isotope chart, and 
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The rate of stellar energy loss in the URCA process (Gamow and Schoenberg 

1941; Chiu 1961) is determined by the electron-capture lifetimes of the nuclei 

involved. 
and White 

Colgate (1963) have proposed an interesting application of the URCA 

mechanism. Other astrophysical applications of stellar electron-capture 

lifetimes w i l l  no doubt be found as the interlocking studies of nuclear astro- 

physics and stellar models become more accurate and more detailed. 

b) Outline of this Paper 

The modern theory of nuclear beta-decay (see, e.g., Konopinski 1959) is 

applied in this paper to the calculation of continuum electron-capture rates 

for transitions of arbitrary degrees of forbiddenness. 

ization of the author's previous studies of allowed continuum electron capture 

(-call 1962 g,b); Schatzman (1958) has reviewed earlier work on allowed 

captures. 

stellar electron captures. 

This work is a general- 

The author is not aware of any previous investigations of forbidden 

No derivations are given in this paper; the results that are presented 

were obtained by techniques developed for analyzing terrestrial. beta-decay 

processes (Konopinski 1963 a,b). - 
astrophysical applications are discussed in detail. 

uncertainties that are present in the prediction of the decay rates of 

certain classes of forbidden transitions are also described. Particular 

ewhasis is placed ctpon using, whenwer possible, terrestrial beta-decay 

measurements to supplement the theoretical stellar formulae. 

The equations that are most usefbl for 

The nuclear physics 

In Section 11, "exact" theoretical expressions are presented that give 

the rate of capture of a single continuum electron in a nuclear transition 

of any degree of forbiddenness. We a lso  present the "normal approximations" 
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t o  the "exact" expressions and examine the va l id i ty  of these approximations 

for  s t e l l a r - in t e r io r  problems. 

analysis by Konopinski ( 1963 - -  a,b) of closely re la ted  terrestrial beta-decay 

The work i n  t h i s  sect ion i s  based upon the 

processes. 

describe the capture of electrons from a Fermi-Mrac gas of a rb i t r a ry  tempera- 

tu re  and density. 

are convenient for  predicting s t e l l a r  ra tes  when laboratory information 

regarding reactions (11, (3) ,  or (4)  i s  available. 

voted t o  a detailed explanation of how the formulae developed i n  Sections I1 

and I11 can be used t o  predict  stellar capture r a t e s  for  stable isotopes and 

fo r  isotopes that decay t e r r e s t r i a l l y  by positron emission or  electron capture. 

Some i l l u s t r a t i v e  examples are t rea ted  i n  Section V I I ;  they are: 

electron-capture lifetime of a proton, (b) the s te l lar  beta-decay of K 

and (c )  the e f f ec t  of forbidden t ransi t ions on equilibrium-process abundances . 
The necessary information f o r  predicting a spec i f ic  decay rate can be 

In Section 111, the r e su l t s  of Section I1 axe generalized t o  

We a l s o  introduce generalized phase-space f'unctions tha t  

Sections IV-VI  are de- 

(a )  the  

, 40 

obtained by reading the appropriate one of Sections N - V I  and re fer r ing  

occasionally t o  Sections I1 and III for defini t ions and remarks concerning 

the accuracy of the  approximations. 

11. CMTURE OF A SINGLE CONTINUUM EIXCTRON 

The work i n  t h i s  section is based upon Konopinski's (1963 a,b) general 

treatment of positron emission and our notation i s  the same as his.  

section (a) ,  we present theore t ica l  expressions, exact t o  second order i n  t h e  

weak coupling constant, for  the  rate of capture of a s ingle  continuum electron; 

these expressions apply t o  nuclear t ransi t ions of any degree of forbiddenness. 

The normal approximations t o  the exact expressions are given is subsection (b); 

I n  sub- 
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t he  va l id i ty  of these normal approximations fo r  s t e l l a r - in t e r io r  problems 

i s  a l so  discussed i n  subsection (b). 

I 

l a) General Results 

I n  order t o  calculate the r a t e  of reaction (2), it i s  necessary t o  use 

for  t h e  i n i t i a l  electron s t a t e  a Coulomb dis tor ted plane wave tha t  has an 
i 1 

I 

I outgoing spherical  wave. On the other hand, i n  calculations of t e r r e s t r i a l  
I 

I positron and electron emission rates ,  equations (3)  and (4), a Coulomb dis- 

f i n a l  s t a t e  ( B r e i t  and Bethe 1954). 

to r ted  plane wave tha t  has an incoming spherical  wave i s  required for  the 

I 
I 

Nuclear beta-decay interact ions axe represented by the following 

Hamiltonian density: 

where a l l  synibols have t h e i r  usual meaning (Konopinski 1959; Bahcall 19622). 

Expansion of and \k, i n  angular-momentum eigenstates leads, a f t e r  an 

integrat ion over electron directions and an average over electron polariza- 

t ions,  t o  the  following equation fo r  the t r ans i t i on  probabili ty fo r  capture 

of an electron i n  the mornentum interval  3 
d p: 

(1 

2 

where 

ana 

q z w + w  
0 
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Equations (6) a re  not changed i f  one requires tha t  qe have an incoming 

The only physical f ac t  spherical  wave instead of an outgoing spherical wave. 

required t o  prove t h i s  result i s  tha t  s t e l l a r - in t e r io r  electrons are unpolarized. 

i s  a Coulomb spherical  wave fo r  an electron and 
"K ,P In  equations ( 6 ) ,  

i s  a pure spherical  wave fo r  a neutrino (Rose 1961). Also, p i s  the 

magnitude of the electron's momentum and W is  i t s  t o t a l  energy; q i s  the 

magnitude of the neutrino's momentum and 

and final nuclear masses. 

and have set fi = me = c = 1. 

t h i s  paper except where exp l i c i t l y  stated otherwise. 

%,E 

Wo i s  the difference between i n i t i a l  

We have assumed one incident electron per volume V 

The above choice of un i t s  i s  used throughout 

Two convenient methods can be used t o  calculate the t r a n s i t i o n  probabi l i ty  

given by equation (sa): 1) d i rec t  expansion of h i n  vector spherical  har- 

monics; 2) substi tution, with appropriate modifications, of h i  fo r  t h e  

positron emission interact ion t reated by Konopinski (1963 2,b). Nuclear 

matrix elements obtained by method 2) r e fe r  t o  t rans i t ions  from f inal  t o  

i n i t i a l  states and hence par t icu lar  care must be taken i n  r e l a t ing  matrix 

elements that occur in 2) t o  the  mare usual ones that r e f e r  t o  t r ans i t i ons  

from i n i t i a l  t o  f i n a l  states. 

among the nuclear matrix elements, we have carr ied out t he  calculation of 

dh by both methods. 

B 

In order t o  avoid mistakes i n  r e l a t ive  phase 

We find: 

where S(W,Z) 

calculations (Konopinski 1963 2,b) except for the subst i tut ions 

i s  the  same shape factor t ha t  occurs i n  positron emission 
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a.nd 

The quantity F(2,W) i s  the well-knam Fermi function (Konopinski 1959; 

Bahcall 19625). Note that equation ( 7 )  corresponds t o  a capture cross 

section fo r  unpolarized, randomly directed electrons given by: 

9 
- G2 q2 F S(W,Z) 

2xv u =  ( 9 )  

where v i s  the  electron's velocity. 

The theore t ica l  shape factor for  continuum electron capture has the 

following form: 

where, i n  Konopinski's notation, 

- 
In equations (9), j, j ,  and J are, respectively, the angular momentum of the  

captured electron, the angular momentum of the emitted neutrino, and the 

t o t a l  lepton angular momentum; R 

and 

Konopinski and Uhlenbeck (1941) i n  the i r  or iginal  paper on forbidden beta 

2 i s  an "average" nuclear radius; L, M = WR , 
- 

N = N/R are  combinations of electron r ad ia l  waves introduced by 

and D are combinations of neutrino racial decay. The quantit ies D+ - 
waves wit'n beta-moments and are defined by Konopinski (1963k); pJ and 

are  numerical Rrnctions tha t  are  a lso defined i n  Appendix A. 

yo 

Expression (9b) d i f fe rs  fiom the corresponding positron shape factor only 

in t he  sign of the D+ D Ej 1 term. 
- 2  
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We shall only make use of equations ( 7 )  and (9) i n  the normal approxi- 

mation t o  be described i n  the next subsection. 

available the more general expressions since special  cases (Konopinski 1963 2,b) 

It i s  useful, huwever, t o  have 

can require more exact treatment than is afforded by the normal approximation. 

b) N o r m a l  Approximations 

L i )  Validity of t h e  Normal Approximation 

The normal approximation consists of retaining only the leading terms i n  

a power ser ies  expansion of S i n  terms of qR and pR. In t ransi t ions for 

which the terms independent of R give a nonvanishing capture rate, t'ne normal 

approximation is  equivalent t o  the usual allowed approximations that were used 

t o  derive the capture rate for  allowed decays (Bahcall 1962~). 

Two necessary criteria for the validity of the  normal approximation fo r  

continuum electron capture i n  stars are: 

1 
? R << 

wo + <w> 

and 
1 <e - 

<w> ? 

where Wo is  the difference between i n i t i a l  and final nuclear masses and <W> 

i s  some maximum effect ive t o t a l  energy of the  captured electron. 

follow from the  requirement tha t  qR and pR are  small compared t o  unity. 

Note tha t  i n  astrophysical applications 

negative. 

Equations (10) 

Wo can be e i ther  posit ive or 

The cr i ter ion for  t h e  va l id i ty  of the n o m 1  approximation i n  t e r r e s t r i a l  
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electron and positron emission i s  equation (loa) with <W> replaced by -1. 

This cr i te r ion  i s  eas i ly  f u l f i l l e d  by every known case of t e r r e s t r i a l  nuclear 

beta decay (Konopinski 19632) . Hence equation (lob) by i tself  can be used t o  

test the  va l id i ty  of the normal approximation i n  stars. 

1.2 AU3 x 

requires 

Substi tuting 

cm for  R i n  equation (lob), we f ind tha t  equation (lob) 

T1O e< *5/&3 ( 1 1 4  

for  nondegenerate electrons and 

<< 300/A p9 

I 

fo r  completely degenerate electrons. Here, Tl0 is the stellar temperature 
i n  units of 10 +10 4( and p9 is the  stellar density i n  units of 10’’ gm/cm 3 . 
Equations (11) are well  s a t i s f i ed  for a l l  s t e l l a r  s i tuat ions i n  which nuclear 

physics studies have so  far  been made, but it i s  possible tha t  equation ( l l b )  

is not s a t i s f i ed  i n  same white dwarf stars.  

The normal approximation may also f a i l  i n  cases i n  which there  i s  an 

accidental  cancellation among the nuclear-beta moments tha t  occur i n  the lowest 

nonvanishing order of S. 

on the  bas i s  of our present knowledge of nuclear structure,  but they can 

fl-equently be detected by t e r r e s t r i a l  measurements of shape factors and decay 

rates. 

f a i lu re  of the normal approximation i s  most likely. 

Such cancellations cannot be predicted theoret ical ly  

Konopinski (1963b) - has discussed the classes of decays fo r  which 

( i i )  Normal Shape Factors 

If only the leading terms i n  L, 2, and 13 are  retained for  the case of 



l a f i e l d  due t o  a point nucleus, equation (9b) becomes 

, (=a) 1 D- D + a Z  

k + Y  
D 2 + k - r D 2 + 2  - k + y  + 

16x2 2 R2j - 1 = -  
sJ J 3 l + y o  'J 

where 

and 

1 k E j + s  

Y E (k2 - C8k2)* . 
Making the approximation 

k - y z (CY Z)2/2k (13) 

i n  equation (=a) and neglecting terms of order (a Z) 3 or higher, we f i nd  

that 

Equation 

positron 

The 

z -  16rr2 2 R2j - 1 
sJ il 3 l + y o  'J 

(14) has exactly the same form as the p a r t i a l  shape fac tor  for  

emission. 

leading terms fo r  D+ and D - are  proportional t o  R '-4 and 
- 

hence for AI  = 11' - 11 > - 1, where I is  the ini t ia l  nuclear spin and I' 

is the f i n a l  nuclear spin, a single value of J dominates equation (9) i n  

t ne  normal appr9xim%iort. This single dominant value of J i s  the minimum 

one defined by 

J = j + ' j  

= A I  0 
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For unique transit ions,  

where 

i n i t i a l  and f i n a l  nuclear pa r i t i e s  sa t i s f ies  7tiycf = (-l)n. 

over j and 3 i n  equation (16) is rest r ic ted t o  j and 7 sat isfying 

equation (15). 

n z A I  -1 = J -  1 i s  the degree of forbiddenness and the  product of 

The summation 

The quantity AJ(j,j) i s  defined by the following equation: 

The vector spherical  harmonics, 

(u .Ti+,>, 

chosen so t ha t  a l l  nuclear matrix elements are  real .  

<+1, 

are  defined i n  Appendix A. 

and the reduced nuclear matrix elements, 

The phases of nuclear s t a t e s  have been 

The notation for the shape-factor (16) i s  one already current i n  the  

literature; the subscript refers t o  the degree of forbiddenness and the super- 

s c r ip t  t o  the t o t a l  angular momentum ejected. 

implies, take place via a single nuclear matrix element, 

Unique decays, as  t h e i r  name 

The allowed A I  = 1' 

from equation (16); we obtain: 

decays have a shape-factor t ha t  can be calculated 

2 2  
E CA <u> . 

The allowed AI = 0' shape-factor cannot be calculated from equation (15) 
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since fo r  A I  = 0 the following possibi l i ty  a l so  leads t o  a shape-factor 

independent of R: 
- 

j - j  E 0 

= A I  . 
Hence equation (15) i s  not sat isf ied.  

(14), the  contribution t o  the allowed shape-factor is  found t o  be: 

When equation (19) i s  used i n  equation 

2 2  s y  = cv <1> 

The general shape-factor for  allowed decays i n  the  normal approximation 

is  therefore: 

= cv 2 2  (1> + CA’ <a$ 
‘allowed 

Equation (21) i s  i n  agreement with previous investigations of allowed con- 

tinuum electron capture (Bahcall 19622) * 

For AI > - 1 par i ty  forbidden transit ions,  

where n = J = AI i s  the degree of forbiddenness and xisf = (-l)m. Here 

M. (J) i s  the  positron version of tne parity-forbidden combination of nuclear 

matrix elements obtained by Konopinski (1963 a,:) and defined i n  AppendFx A. 

J 

The quantity M.(J) 

matrix elements and hence par i ty  forbidden t rans i t ions  are  par t icular ly  

i s  a l inear  combination of three independent nuclear 
J 

susceptible t o  cancellation anomalies. 
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The first parity-forbidden t ransi t ions with AI = 1- have a shape-factor 

t ha t  is independent of energy. The 0’ t o  0- shape-factor, 

i s  a l so  energy-independent. The general first parity-forbidden shape-factor 

is: 

. 

111. S T E M  CAPNRE RATES 

Capture i n  a Fermi Gas a) 

Equation ( 7 )  gives the capture ra te  of a s ingle  continuum electron with 

a de f in i t e  t o t a l  energy W. In order t o  calculate s t e l l a r  capture ra tes ,  we 

must multiply equation ( 7 )  by the probabili ty tha t  a s t e l l a r  electron actual ly  

has the  energy W; t h i s  probabili ty is essent ia l ly  determined by the 

Fermi-Dirac d is t r ibu t ion  function, 

If the correct d i s t r ibu t ion  fhnction for a specif ic  problem departs s ign i f i -  

cantly fYom the Fermi-Dirac f’unction, then the formulae given below should be 

used with (1 + e -v+W/kT -1 
) replaced by the  correct dis t r ibut ion flmction. 
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The notation i n  equation (26) is  the sane as  t ha t  used previously by 

ter  Haar (1956) and by the present author (Bahcall 1962 Q) . For nondegen- 

e ra te  electrons, convenient analytic and numerical expressions for v have 

been given by several authors (Chandrasekhar 1957; Chiu 1961; Far le r  and 

Hoyle 1963). Note t h a t  our v i s  equal t o  (mec /kT - a) i n  Cnandrasekhar's 

notation, p/kT i n  Chiu's notation, and mec q/kT i n  Fowler and Hoyle's 

notation. For highly degenerate electrons, v is  approximately equal t o  

the Fermi e n e r a  divided by kT (Bahcall 1962~) .  

2 

2 

Multiplying equation ( 7 )  by the Fermi-Dirac d is t r ibu t ion  function, we 

obtain: 

where the  dimensionless average shape factor i s  defined by the  equation 

I 
0 

The threshold momentum, Po , is  defined i n  terms of the  difference between 

i n i t i a l  and f i n a l  nuclear masses, Wo , the  re la t ion  is: 

(exoergic capture). 2 
0, i f  Wo > - - mec 

= { (wt - l)'/*, i f  WQ 5 - mec2 (endoergic capture) . 

An extra factor of two occurs i n  equation (27a) because two electrons can be 

i n  the same momentum eigenstate i f  their  spin projections a r e  different .  
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b) Generalized Phase-Space Functions 

For unique decays, it is convenient to introduce dimensionless general- 

ized phase-space functions, KF’), that are defined by the following 

Here n is still the degree of forbiddenness and AI = n + 1. Equations (16), 

(27), and (28)  imply that 

where j + 5 = n + 1. If terms of order (CXZ)~ in Lj+ are neglected, 

then Kn (n+l) has the following symmetrical form: 

L 
0 

Equation (30) is sufficiently accurate for most astrophysical applications . 
which is used to characterize allowed Recall that the quantity ( f T ) ,  

terrestrial beta decays, satisfies the relation 

7 7 

2n” In 2 ($ m2c3 5 5  
lab G2 

(f . 

The Coulomb-corrected phase-space f’unction, f, is defined by the equation 
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where by convention the plus sign applies for  electron emission and the minus 

sign for positron emission. The m x i u  electron or positron momentum i n  a 

t e r r e s t r i a l  decay is  here denoted by P The value of (fr)lab i s  con- 

ventionally used t o  c lass i fy  t e r r e s t r i a l  beta decays since it corrects the 

ha l f - l i fe  for the "accidentalf1 effects of energy release and nuclear charge. 

mBX. 

For alluwed s t e l l a r  captures, 

-1 
1 3 

K ( l )  = 1 dp p 2 2  q F(2,W) ( l + e  -V+W/kT 
0 

E K ,  

where K is  the in tegra l  Over the  available phase-space, with Coulomb and 

s t a t i s t i c a l  corrections, t ha t  was introduced i n  previous studies of allowed 

s t e l l a r  captures (Bahcall 1962 - -  a,b). 

t ion  of 

Note the s imi la r i ty  between the def ini-  

f ,  equation (31b), and the definit ion of K, equation (32a). 

The s t e l l a r  phase-space function K s a t i s f i e s ,  according t o  equations 

(21), (27)  and (28 ) ,  the  relation: 

which is  en t i re ly  analogous t o  the relation, equation (31a), s a t i s f i ed  by the 

t e r r e s t r i a l  phase-space function f. Thus K i s  a natural  quantity t o  use 

i n  charecterizing allowed s t e l l a r  captures. 

ing sections, t ha t  by focusing attention on the  product 

u t i l i z e  laboratory beta-decay measurements t o  make simple and accurate predic- 

We s h a l l  a l so  see, i n  t h e  follow- 

( K  one can 
2 s t a r  

t ions of allowed s t e l l a r  capture rates. 

F i r s t  parity-forbidden transit ions have shape-factors tha t ,  i n  the normal 



approximation, a r e  energy independent combinations of nuclear matrix elements;. 

the  expl ic i t  def ini t ions of the f i r s t  parity-forbidden shape-factors were given 

i n  equations (23)-(25) 

there ex i s t  re la t ions  for  first parity-forbidden t rans i t ions  t h a t  a re  en t i re ly  

analogous t o  re la t ions (31) and (33) for allowed decays. 

first parity-forbidden decays are: 

Because these shape-factors a re  energy independent, 

The re la t ions  for  

and 

(K '*Istar S1 = 2x2 Ln 2/G2 Y ( 3 5 )  

where S1 

by equation (25). 

i s  the par t icular  combination of nuclear matrix elements defined 

Thus K i s  also the  appropriate quantity t o  use i n  characterizing first 

parity-forbidden s t e l l a r  captures. 

N. STELLAR CAPTURE RATES FOR TERRESTHIAL POSITRON EMITTERS 

In  t h i s  section, we show how s t e l l a r  capture r a t e s  can be calculated 

*om the  r e s u l t s  of laboratory studies of t e r r e s t r i a l  positron decays. 

Since positron decay i s  assumed t o  occur on earth, continuum electron 

i s  se t  equal t o  zero throughout t h i s  section. capture i s  exoergic and Po 

a )  Allowed and F i r s t  Parity-Forbidden Transitions 

It has been shown previously (Bahcall 1962 g,b) tha t  continuum electron- 

capture l ifetimes for nuclei t ha t  decay t e r r e s t r i a l l y  by allowed positron 
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emission can be calculated &om the following relation: 

= (f K-l 
l ab  

(71) 
3 s t a r  

. 

i s  the measured positron ft-value and K i s  the s t e l l a r  

phase-space fbnction defined by equation (32) . 
For allowed t ransi t ions,  equation (36) follows imed ia t e ly  from equations 

(31) and (33). 

first parity-forbidden t ransi t ions;  t h e  proof of equation (36) for  first 

parity-forbidden t rans i t ions  follows immediately from equations ( 3 4 )  and (35) . 
Equation (36) is a lso  valid, i n  the normal approximation, for  

The simple physical fac t  expressed by equation (36) i s  tha t  the r a t e  of 

an allowed (or first parity-forbidden) beta-decay t ransi t ion,  on ear th  or i n  

a s t a r ,  i s  proportional t o  the t o t a l  available phase-space. 

Equation (36) i s  a powerful re la t ion since it i s  independent of nuclear 

matrix elements, nuclear rad i i ,  and beta-decay coupling constants; a l l  these 

quant i t ies  are ones t h a t  cannot be rel iably predicted with our present know- 

ledge of nuclear structure.  Note tha t  equation (36) can be used t o  estimate 

s t e l l a r  decay r a t e s  even i f  the corresponding t e r r e s t r i a l  positron decay has 

not been thoroughly investigated. This i s  because considerable experimental 

information ex i s t s  t ha t  correlates observed ( f  'I ) values with models of 3 lab 
nuclear s t ructure  (Feenberg 1955; Mayer and Jensen 1955; Konopinski 19632), 

and thus it is often possible t o  guess f a i r l y  accurately a value of ( f  T ~ )  - 
2 lab 

t o  be inser ted i n  equation (36) . 
The f ac t  t ha t  equation (36) can be used t o  estimate s t e l l a r  decay r a t e s  

even when the corresponding laboratory decay r a t e s  have not been measured 

i s  a par t icu lar ly  useful feature i n  studies of stars a t  very high temperatures. 

This feature  i s  usef'ul because the beta decay of excited nuclear s ta tes ,  a 
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process which cannot eas i ly  be studied i n  the laboratory, frequently dominates 
+8 oK the s t e l l a r - in t e r io r  beta decay of nuclei a t  temperatures i n  excess of 10 

(Caneron 1959:; Bahcall 19625 Fowler and Hoyle 1963). 

Approximate analytic expressions for K were given by Eahcall (1962 2,b) 

Fowler and Hoyle (1963) have for both degenerate and nondegenerate electrons. 

since developed analyt ic  approximations for  K t ha t  are par t icu lar ly  con- 

venient fo r  the conditions thought t o  obtain i n  s t a r s  during the formation of 

the iron-peak elements. 

b) Unique Transitions 

The t rans i t ion  probabili ty for unique positron emission on ear th  i s  

(Konopinski 1963 - -  a,b) : 

= < pmax dp p 2 F(-2,W) (Wo- W)2 Si:! ( 2 , W )  , (37) 'lab 
2n 0 

where S (n) has, i n  the normal approximation, the same form, equation (X),  

fo r  positron emission as for  continuum electron capture. Recall t ha t  unique 
n+l  

t h  n- -forbidden t rans i t ions  have AI = n + 1 = J with ginf = (-l)n.  

One can again obtain an equation tha t  i s  independent of nuclear radii, 

nuclear matrix elements, and other uncertain parameters by combining equa- 

t ions  (16), (27) and (37), we find: 

where, analogous t o  equation (29), 



- 24 - 

D A . (39b) 2 2  23-1 25-1 max 1 
0 (2n+1)! c - ¶. 

0 
J , J  (23): (2'3): 

Notice tha t  f o r  allowed decays f:') reduces t o  the usual Coulomb-corrected 

phase-space factor  f. 

Equation (38) states  t h a t  the r a t e  of a unique t ransi t ion,  on ear th  or 

i n  a s t a r ,  i s  proportional t o  the generalized phase-space available. 

The quantity fn (n+l) can easi ly  be ccanputed i f  a laboratory measurement 

of the maximum positron momentum, P-, has been performed. 

momentum Pmx 

positron emitters. 

s t e l l a r  capture r a t e  i n  terms of the  most readi ly  measured nuclear parameters. 

The maximum 

has, i n  fac t ,  been measured for  almost a l l  k n m  t e r r e s t r i a l  

Thus equation (38), l i k e  equation ( 3 6 ) ,  expresses the 

Equation (38) can a l so  be used t o  estimate s t e l l a r  capture r a t e s  of 

isotopes whose t e r r e s t r i a l  decay has not been thoroughly investigated i n  the 

laboratory, since there  a l so  ex is t s  a considerable amount of experimental 

71 1 with models of nuclear s t ructure  (n-i.1) information t h a t  correlates  ( fn 
Y lab 

(Feenberg 1955; Player and Jensen 1955; Konopinski 19632). 

c)  General Parity-Forbidden Transitions 

The t rans i t ion  probabili ty for  t e r r e s t r i a l  parity-forbidden positron 

emission i s  (Konopinski 1963 

D 
maX - -i G2 

'lab - 3  
2n 0 

-> a - b): 

dp p2 F(-Z,W) (Wo - W)* S p )  (Z,W) , 
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where Sf) has, i n  the normal approximation, the same form for  positron 

emission as for  continuum electron capture (see equation (22)). 

t ha t  n g  parity-forbidden transition6 have AI = n = J with flinf = (-l)n. 

Recall 

It i s  i n  general not possible t o  derive for  parity-forbidden captures 

an equation, similar t o  equation (38), from which s t e l l a r  capture r a t e s  can 

be calculated when only Pmx and (71) are  known. This i s  because the  
a .  F lab 
(n) shape factor,  Sn , for parity-forbidden t ransi t ions does not have a unique 

energy dependence; the energy dependence of parity-forbidden t rans i t ions  i s  

determined by a collection of nuclear matrix elements t ha t  are, i n  general, 

unknam. The complicated combinations of nuclear matrix elements t ha t  de- 

termine the energy 

M.(J) i n  equation 

a simple equation, 
3 

tures only because 

dependence of were introduced as  parameters called 

(22) and are defined i n  Appendix A. 

equation (36), for  f irst  parity-forbidden continuum cap- 

We were able t o  obtain 

S y )  and S1 (’) are independent of energy i n  the normal 

approximation. 

One can, however, derive an equation for  general parity-forbidden t r ans i -  

t ions  t h a t  can be used t o  calculate s t e l l a r  capture ra tes  i f  the t e r r e s t r i a l  

positron shape factor, Sn (n)  , the maximum positron momentum 

laboratory positron half- l i fe ,  

ally. 

and the 
pEU3X) 

, have a l l  been determined experiment- (T3)lab 
W e  find, analogous t o  equations (38) and (39), 

, 

where now 
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and 

depend on the relevant nuclear matrix elements . 
Equations (41)  can be re l iab ly  used t o  predict  s t e l l a r  capture rates 

only i f  the  laboratory positron shape-factor, i.e., the  unknown part of the  

integrand of equation (41b), has been ueasured Over a range of momenta that  

s ignif icant ly  overlaps the important range of momenta that occurs i n  equation 

(41c). 

enough t o  make r e l i ab le  predictions possible. 

For most s t e l l a r  si tuations,  the two ranges of momenta do overlap 

If the  t e r r e s t r i a l  positron spectrum has not been measured, one can s t i l l  

make very rough estimates of the stellar capture r a t e  by guessing a form far 

Sf)(Z,W) and then applying equations (41). This procedure i s  very inaccurate 

for  parity-forbidden transit ions,  since they are  likely t o  exhibit anomalies 

due t o  cancellations among nuclear matrix elements. 

V. STELLAR CAPTURE: RATES VERSUS TERRESTRIAL CAPTURE RATES 

In  this section, we discuss how one can predict  the r a t e  of s t e l l a r  

continuum electron capture for an isotope tha t  decays terrestrially by capture 

of a bound atomic electron. The threshold momentum, Po, is  again zero. 

The t e r r e s t r i a l  captures of primary in t e re s t  a re  ones involving K-shell 

electrons since capture from higher shel ls  usually accounts fo r  a small fraction, 

of the order of 10 per cent, of the t o t a l  decay ra te .  

corrections for  captures from higher shells can now be made with considerable 

Moreover, the theoret ical  
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accuracy (Bahcall 1962~3, 1963) . 
r a t e s  as  providing accurate values for  K-capture ra tes .  

Hence we can regard measured t o t a l  capture 

a) Allowed and F i r s t  Parity-Forbidden Transitions 

(i) General Results 

It i s  convenient t o  define a quantity, feet., by the  following equation: 

where the  sum extends Over a l l  atomic principal quantum numbers, n. 

equation (42), Sns(0) 

ated a t  the nucleus and 

ns-electron is  captured by the nucleus. Note tha t  

In 

i s  the value of an ns-electron's wave function evalu- 

9nS is  the momentum of a neutrino emitted when an 

%s =" Wo + 1 - b(ns) Y (43) 

where b(ns) 

atom. 

i s  the posit ive binding energy of an ns-electron i n  the i n i t i a l  

Using well-known re su l t s  (Brysk and Rose 1960; Konopinski 1963 - -  a,b) for  

bound electron capture, one can easily show t h a t  fo r  allowed decays: 

and fo r  f i rs t  parity-forbidden decays 

Capture from other than s-orbits is neglected i n  equations (44) and (45). 

Equations (44) and (45) have exactly the  same form as equations (31) and 
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(33) and hence the  re la t ion  

obtains fo r  allowed and first parity-forbidden electron captures. 

equation (46), l i ke  equation (36), i s  independent of nuclear matrix elements, 

nuclear rad i i ,  G, Cv, and CAS 

Note t h a t  

Equations (44) and (45) a l so  show tha t  feOc plays the  same ro le  i n  
0 

electron capture as f(-Z, Wo) plays i n  positron emission, Hence the empir- 

i c a l  correlat ion tha t  ex is t s  between 

also provides an empirical correlation between 

ture,and equation (46), l i k e  equation (36), can be used t o  estimate a s t e l l a r  

capture l i fe t ime even i f  the t e r r e s t r i a l  decay has not been thoroughly invest i -  

gated. One s i m p l y  makes an educated guess for  (f?)lab and inse r t s  the 

guessed value i n  equation (46). 

( f ( -Z ,  Wo) ? ) and nuclear s t ructure  

? ) and nuclear struc- 
3 lab 

(*e,c. 3 

( i i )  Approximate Expressions and Physical Interpretat ion 

It i s  useful t o  derive some approximate re la t ions  fo r  K and feOc i n  . 
order t o  understand the  physical interpretation of equation (46). If one 

assumes tha t  Wo + 1 >> <E> , where <W> is  some average electron k ine t ic  

energy i n  a s ta r ,  then one can easi ly  show that 

Y (47) 

where ne i s  the electron concentration and <F> i s  the Fermi function 

evaluated a t  W = 1 + <E> 

nondegenerate matter. For nondegenerate electrons, <E> - kT and, for  

Equation (47)  is val id  for  both degenerate and 
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degenerate electrons, (E> - %, where % i s  the electron Fermi energy. 

The quantity feet a l so  has a simple approximate form: . 

2x (wo + 1)2 

Thus : 

I 

e <F> 

or : 

(49) 

3 where p is the density i n  d c m  and we is the  mean molecular weight per 

electron . 
Equation (49) shows tha t  the r a t i o  of the s t e l l a r  t o  the laboratory 

l i fe t ime is  roughly equal t o  the  r a t i o  of the electron density at  the nucleus 

fo r  the laboratory and s t e l l a r  si tuations,  i.e., t o  the r e l a t ive  probabili ty 

of finding an electron a t  the nucleus where it can be captured. 

Equation (50) can be used t o  calculate quickly the order of magnitude 

of a s te l lar  capture lifetime when the t e r r e s t r i a l  capture l i fe t ime i s  known. 

b) Unique Captures 

li) General Results 

For a l l  unique decays, the  r a t e  a t  which two atomic ns-electrons are 
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captured i s  (Konopinski 1963k) : 

where L S  - 1 i s  the degree of forbiddenness. Hence, 

where 

(52b) 

Equation (52a) has the same s t ructure  as equation (38) and hence equation (52a) 

can also be used t o  estimate the s t e l l a r  lifetime of isotopes whose laboratory 

decay has not been thoroughly investigated. 

One can a l so  prove tha t  equations (49) and (50) are  approximately s a t i s -  

f i ed  fo r  a l l  unique t ransi t ions i f  Wo + 1 >> (E> . From equations (30) and 

(32), we f ind tha t  

and therefore: 

~n equation (53) ,  < Ip + ql 2(a-1)> i s  the average over a l l  directions and 

energies of (p + q) 
N . 1  

Equations (52) and (54), when combined, yield 

a s  asser ted.  
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c )  General Parity-Forbidden Captures 

Since the bound capture r a t e  i s  dominated by K-capture, only a singie 

cmbination of nuclear matrix elements, Id4(&), 

the  t e r r e s t r i a l  capture formula for  general parity-forbidden t ransi t ions.  

enters i n  an important way 

Unfortunately, the s t e l l a r  capture ra te  depends on a l l  M (AI)  f o r  which j 

and 7 s a t i s f y  equation (15) . Thus for general parity-forbidden t rans i t ions  
s 

one cannot derive an expression for  the s t e l l a r  capture rate t h a t  is independ- 

ent of unknown nuclear quantit ies.  Instead, one must use d i r ec t ly  equations 

(22) and (27) with rough guesses fo r  the unknown nuclear matrix elements and 

other nuclear quantities; t h i s  procedure i s  very inaccurate with our present 

knuwledge of nuclear structure.  

V I .  INaJCED EUCTRON C m  

In this section, we discuss the ra te  of continuum electron capture for  

an isotope t h a t  i s  s table  on earth. 

(3) do not occur, the relevant t e r r e s t r i a l  decay i s  described by react ion ( k ) ,  

Since the t e r r e s t r i a l  reactions (1) and 

(Z-1 ,A)  + (Z,A) + e- f 7 . 
The threshold momentum for  s te l lar  electron capture by the isotope (Z,A)  

i s  obviously not zero if reaction (4) occurs on earth. 

e )  Allowed and Unique Decays 

The s t e l l a r  capture l ifetimes can again be computed from equation (36) for 
from 

allowed captures and equations (38) and (39) for a l l  unique decays. 

change t h a t  i s  necessary i n  the formulae referr ing t o  laboratory decays is  

The only 

t h a t  F(-2,W) must be replaced by F(+Z,W) i n  the expressions for  f(Z,Wo) 



- 32 - 

(n+l) (Z,W ). For allowed captures, the above substi tution merely and fn 

replaces f ( -Z,Wo) by the equally well-investigated function f(+Z,Wo) . 0 

The s t e l l a r  phase-space functions K and Kn (n+l) must 

lated for  Po different  from zero. Fowler and Hoyle (1963) 

convenient analytic expressions for K, with nonzero P tha t  
0’ 

now be calcu- 

have derived 

are  val id  for  

the conditions thought t o  obtain i n  the in t e r io r s  of s t a r s  during the forma- 

t ion  of the  iron-peak isotopes. 

more general functions, KF1), although the  general results are  very com- 

pl icated . 
Their r e su l t s  can readily be extended t o  the  

Some analytic approximations for first-forbidden unique decays are  

given i n  Appendix B. 

b) Parity-Forbidden Decays 

The cambinations of nuclear matrix elements t ha t  occur i n  theore t ica l  

expressions for  t he  s t e l l a r  capture rates a re  different  from the combinations 

tha t  occur i n  the  expressions for  t e r r e s t r i a l  electron-emission rates .  This 

i s  because the s t e l l a r  capture probability i s  determined by the positron 

shape-fa.ctor and the  t e r r e s t r i a l  decay probabili ty i s  determined by the 

electron shape-factor; the parity-forbidden shape-factors are well-known 

(Preston 1962; Konopinski 1963 - a,b) t o  be l inear  cambinations of reduced 

matrix elements with some coefficients t ha t  change sign when an electron i s  

replaced by a positron. 

i n  the first parity-forbidden shape-factor, Si1) of equation (23), for  elec- 

‘tron capture and positron emission, becomes 

For example, the term + cXZ Cv <i $>/e which occurs 

- C%Z Cv <i $>/2 for  electron 

emission; a l l  other terms i n  S f l )  a re  unchanged. 

It i s  therefore not possible t o  calculate induced s t e l l a r  parity-forbidden 
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capture ra tes  *om the  resu l t s  of simple experiments on the re la ted  exoergic 

t e r r e s t r i a l  decays. 

been determined, a t  l ea s t  approximately, by a se r ies  of experiments and one 

can therefore use equations (22)-(25) and (27) t o  calculate d i rec t ly  t h e  

s t e l l a r  capture l ifetimes.  In  most casesy however, the best  one can do i s  

t o  make some crude guess far the  relevant matrix elements and t h i s  w i l l  i n  

general lead t o  large uncertaintics i n  the computed l ifetime. 

I n  a few cases, a l l  the  nuclear matrix elements have 

V I 1  APPLICATIONS 

In t h i s  section, we 

calculating some s t e l l a r  

i l l u s t r a t e  the r e s u l t s  of the  previous sections by 

capture ra tes  . 
a )  e - + p + n + v  

(i) Ste l la r  Rates 

The electron-capture l ifetime of a s t e l l a r  proton is: 

= (1175 f. 30) sec K-l ( 5 5 )  
star 

To obtain equation ( 5 5 ) ,  we have used, i n  equation (36), the value given by 

Durand e t  a l .  (1963) of ( f  - for  the beta decay of the neutron. 
2 lab 

For nondegenerate electrons, 

[x2 + 6x + 121 * g 5  +v-x e J 

( 5 6 )  



- 3 4 -  

where 

B 3 m e c2/kT (57a) 

and 
bo I 

x z -  
kT 

2 2.54 #3 . 
Note t h a t  the proton l i fe t ime depends exponentially on the threshold energy 

divided by kT. 

It i s  in te res t ing  t o  know the proton l i fe t ime under t h e  conditions thought 

t o  obtain i n  white dwarfs or i n  the e a r l y  stages of an expanding universe. In 

both these s i tuat ions,  the electrons are r e l a t i v i s t i c a l l y  degenerate and the  

appropriate f’unction K is: 

where the  t o t a l  Fermi energy is  defined by 

wF = (1 + (3n 2 ne) 2/3)* 
( 5 9 4  

1 

-4 (6 r’3 + 11 ‘ kev. (59b) 

3 I n  equation (59b), p i s  i n  &cm 

We have neglected Coulomb corrections i n  equations (56) and (58); this 

neglect gives r i s e  t o  a maximum error of 6 per cent, which would occur fo r  

Fermi energies only slightly greater than  l W o l o  
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(ii) The Saxon Emeriment 

Saxon (1949) t r i e d  t o  observe reaction (a) with 1 Mev electrons f'rom 

a van de Graaff accelerator, but was only able t o  set an upper l i m i t  of 

2.5 x cm on the effect ive cross section. We can eas i ly  see t h a t  the  

expected theoret ical  cross section for reaction (a) i s  much less than the 

observed upper l i m i t .  

2 

Equations ( 7 )  and (31a) can be used t o  show tha t  

where v i s  the  velocity of the incoming electrons and ( f  T ~ )  i s  the 

neutron f't-value. 

according t o  equation (60), only 3 x 10 

3 lab 
The theore t ica l  cross section for  1Mev electrons is, 

-45 cm2 . 
b) IS4' Decay 

40 40 In order t o  understand the formation processes of A and Ca , it 
i s  necessary t o  have a t  l ea s t  a semi-quantitative understanding of the  beta- 

decay l i fe t ime and branching r a t i o s  of K40 a s  a function of temperature 

and density. 

excited s t a t e  of K40 may d d n a t e  i t s  s t e l l a r  beta decay. 

physically important levels  for  A40, K40, and Ca 

Bashkin (1962) has suggested tha t  the decay of t h e  29 kev 

Tine astro-  
40 a re  sham i n  Figure 1. 

The t o t a l  K40 decay r a t e  can be written as  a sum of two terms, 

p t a l  s tax = A s t a r  (K40 -+ Ca4') + Astar (K40 -t A40) ? 

where 
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'star (K40 + A40) = AeOc (4- + 2+) + e + (3- -+ *+I) . -3 .5/T8 

(61c 1 
In equations (611, nuclear energy levels are  ident i f ied  by t h e i r  spins and 

pa r i t i e s  and the temperature, T8, i s  measured i n  units of 10 +a OK . 
40 The s t e l l a r  decay r a t e  of the  1.321 MeV B- t r ans i t i on  of K40 t o  Ca 

will probably not be s ignif icant ly  different from i t s  t e r r e s t r i d  value; t h i s  

conclusion i s  based upon previous studies of the s t e l l a r  decay r a t e s  of 

@--emitters (Bahcall 1961, 1962~). The excited-state 5 -+ 0' t rans i t ion  

will probably not be appreciably faster than the ground s t a t e  t o  ground-state 

decay. Thus we conclude tha t  

- 

h s t a r  (K40 -+ m40) 2 - 'earth ( K ~ O  .+ ca4') . 
It is  unlikely tha t  the third-forbidden 3- t o  0' K40 t o  A4* t r ans i t i on  

3- t o  2' t ransi t ion,  since w i l l  proceed as  rapidly as  the first-forbidden 

the two extra orders of forbiddenness would normally be fax more important 

than the  additional energy available for the more forbidden t ransi t ion.  

we expect t ha t  

Hence 

-3 5/T8 
'star (K40 -c A40) = heec e (4- -+ 2+) + e A e.c. ( 3 -  -+ 2') . (63) 

The t r o n s i t i m  probability, h (4- -+ 2+),  can be calculated for any 

specified s t e l l a r  temperature and density with the  formulae given i n  Appendix 

B. The excited-state t rans i t ion  probability, he .C ( 5 -  -+ 2+), cannot be 

accurately predicted since no measurement of the excited-state decay r a t e  

has been made. 

e.c. 

. 

A rough estimate of t h i s  decay r a t e  can be made, however, by 
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using equation ( 4 7 )  and assuming t‘nat ( f  %) i s  approximately 

10 - sec. The beta-decay branch, and lifetime, tha t  dominate the 

s t e l l a r  decay of 

according t o  equations (62) and (63). 

e*c*  2 lab 
+7.5 + 1.0 

$0 
w i l l  vary w i t h  temperature and density approximately 

c) e-Process Capture Rates 

Fowler and Hoyle (1963) have sham that the beta-decay r a t e s  of s ix  

isotopes, Fe 54,55,56 and N i  56’57958, determine, on t h e i r  picture of the 

equilibrium process, the observed relat ive abundances of the elements i n  

the i ron peak. Since several  of the ground-state t o  gramd-state electron 

captures for  these isotopes are forbidden, it i s  important t o  know i f  any 

of the forbidden t ransi t ions occur appreciably more rapidly than the allowed 

excited-state t rans i t ions  tha t  can also occur. 

We have examined the most l ike ly  decay schemes of each of the above 

l i s t e d  six isotopes i n  an attempt t o  determine i f  forbidden captures can 

greatly reduce the t o t a l  decay r a t e  predicted (Fowler and Hoyle 1963) by 

considering only allowed decays. In  th i s  investigation, we have adopted 

the standard e-process conditions of Fowler and Hoyle. The most important 

condition, for  our examination, i s  that Fowler and Hoyle use an effective 

e-process temperature of 3.8 x LO+’ %. 
Boltzman population factor  for  excited nuclear s t a t e s  of approximately 

e-3E, where E i s  the excitation energy i n  MeV. Thus nuclear s t a t e s  with 

excitation energies as high as 1.5 MeV have an average population greater 

This temperature corresponds t o  a 

than or  of the order of 1 per cent. 

rough ru l e  each successive degree of forbiddenness increases t h e  appropriate 

ft-value by a factor of the order of 100 (Feenberg 1955; Konopinski 1963b). - 

Beta-decay experiments show tha t  as a 
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Using the above facts, we have found that none ofthe six isotopes of 

interest are likely to have tneir beta-decay rates affected significantly 

by forbidden decays. 
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APPENDIX A. 

The notation and definit ions i n  t h i s  appendix a re  taken from Konopinski 

(1963 g,b). 

are  defined i n  terms of the The vector spherical  harmonics, Z J m ,  
by the relation: 

L 

yIm ' spherical  harmonics, 

A A  - 1  
where = e e = + 2-2 (gx 2 i ) when $ are  uni t  vectors i n  the 

0 2' +1 Y X,Y,Z 

d i rect ions of the Cartesian axes. 

The nuclear beta-moments are  introduced with the  help of the Wigner- 

Eckart theorem. 

<If(Mf) J(m)lIi(Mi)>, where 

spin and spin projection, respectively. 

L e t  (V.A,) stand for  the vector-addition coefficient 

Ii, If, Mi, Mf a re  the i n i t i a l  and f i n a l  nuclear 

Then: 

and 

Here complex-conjugate i s  denoted by a s t a r  and hermitian-conjugate by a 

dagger. The i n i t i a l  and f i n a l  nuclear s t a t e s  are represented by 

and 

suppressed for  simplicity i n  writing. With the conventions adopted i n  equations 

( ~ ) - ( f i ) ,  all nuclear beta-maents, qJ>, <YSyJ>, <a T>, and <a. T>, 

11, (Mi)> 

IIf (Mf)>; a l l  nuclear variables other than spin quantum numbers are  



- 40 - 

can be chosen t o  be simultaneously r e a l  (Konopinski 1963b). - 
The general parity-forbidden combination of nuclear matrix elements, 

M (J), is given by the following equation: 3 

+ (aZ/2j +1) (J+l/2J+1) 3 CA < u  TJ > (A61 - -J 

The auxi l iary quantit ies p and yo are  defined by the following 

relations:  

and 

= ( 1 - 2 2 )  2 3  
yo - 

The r e l a t i v i s t i c  expression for  the Fermi f’unction is :  

where R i s  the nuclear radius, r ( w )  is  the Gamma-function of w, and 
2 q = aZ W/p. When (aZ) << 1 or W >> 1, then: 

Equation (A9) differs by a factor of 

i n  Bahcall (13622). 

(1 + Y0)/2 from the expression given 
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APPENDIX B. 

In this appendix, we give approximate analytic 

the generalized phase-space function that describes 

captures. We assume throughout this appendix that 

a) Nondegenerate Case 

expressions for K1 (2) 

first-forbidden unique 

(c%z)2 << 1. 

From equation (30), we see that for exoergic decays: 

Following Fowler and Hoyle (1963), we set 

where '1 = CZ W/p. The quantity < F/2nq > is a sluwly varying function 
of temperature at high temperatures and hence can be estimated fairly ac- 

curately by evaluating F and '1 at some average energy, such as (3 kT/2). 

Using (E) in (Bl), we find: 

c 4  +u-@ F K?) = 2x e < > i3-l v + h2 (v + 1)2 B - ~  

+ 2v(v+1) (v2+7v+4) 8-2 + l 2 ( v + l )  (2v2+6v+1) #3-3 

, (33) 1 + 24(?v2 + 16v+ 6) PW4 + 720 (v + 1) 6'5 + 1440 8-6 

where 

#3 = mc2/kT Y 

2 Wo + mc 
v =  2 9 

mc 
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and 

Here K (j3) 

and 202 of Watson's (1944) t r ea t i s e  and ne 

is  a Bessel function o f t h e  second kind discussed on pages 79 2 
is the electron concentration. 

2 When (mc /kT) >> 1, i.e., T < 10'' OK, then 

or, very approximately, 

Here T8 i s  the temperature i n  uni ts  of 
3 

OK and p5 is the density i n  

units of dCm 
The general result for  exoergic decays (Po # 0) is  very complicated and 

we merely present two limiting expressions. If l W o l  >> kT, then 

and i f  lWol << kT, then: 

b) Degenerate Case 

If Po = 0 and the electrons a re  completely degenerate, then: 
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2 7(v + 1) 7 (7v + 16v + 6) 
2% +E 

F 

2 7v(v + 1) (v + 7v + 4 1  2 7(v + 1) (2v + 6v + 1) 
+ + - I 

4 E/ 

"I ' 
7v2(v + 1) + + 

2 Jg * EF6 

where the Fermi-kinetic-energy is given by: 

3 and p is in d c r n  . 
If Po 2 PF, then: 

If Po < P i.e., (WF - /Wol/WF)<< 1, then: - F' 

(Blla) 

( Bl lb  ) 

( B1.3 ) 
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FIGURE CAPTION 

40 K40 40 F i g .  1. Astrophysically Important Levels of A , , Ca . 
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